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1. INTRODUCTION 

We will consider the ONE-IN-THREE SAT problem, a variant of 3SAT for which every clause has exactly one literal in 

the clause true (instead of at least one). In [1] it is proved that ONE-IN-THREE SAT is NP-complete. 

Proposition 1. ONE-IN-THREE SAT is NP-complete. 

Proof. For the proof see [1], chapter 9, page 207, problem 9.5.3. 

Lemma 1 (see [1], lemma 11.2, page 247). If X is a random variable taking nonnegative integer values, then for any 

     the probability     *       ( )+    
 

 
  , where E(X) denotes the expected value of X. 

Proof. Let    be the probability that    . Then we have: 

 ( )   ∑         ∑             ( )    ∑             ( )        ( )      *       ( )+. From the relation above the 

lemma follows. 

In this article I will present an efficient probabilistic algorithm that solves ONE-IN-THREE SAT in polynomial time with 

high probability. 

2.   THE PRESENTATION OF THE ALGORITHM 

Definition 1. Given a truth assignment for the n variables in a ONE-IN-THREE SAT instance, the dual assignment is 

simply obtained by flipping the truth value for each variable (from 0 to 1 and from 1 to 0). 

Definition 2. Given a truth assignment for the n variables in a ONE-IN-THREE SAT instance, we have two types of flips, 

the      flip (when we change the corresponding variable so that a literal changes its truth value from 0 to 1), and the 

     flip (when we change the corresponding variable so that a literal changes its truth value from 1 to 0).   

We are now ready to present the algorithm. This algorithm is a modified version of Schoning’s algorithm.  

Modified Schoning Algorithm. 

Input: a formula in ONE-IN-THREE SAT 3-CNF with n variables. 

Guess an initial assignment    *   +  for the n variables, uniform at random. 

Repeat      times: 
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Randomly choose one type of flip to perform. 

If the formula is satisfied by the dual assignment: stop and accept. 

If the formula is satisfied by the actual assignment: stop and accept. 

If there are no literals left that allow the type of flip chosen: stop and reject. 

Choose one literal at random (from any clause of the expression) that allows the type of flip chosen, and flip its truth 

value. 

There are a few differences between this algorithm and Schoning’s algorithm (see [2]) and the present algorithm. We 

focus on the overall number of possible flips, not just on one clause at a time. This is, in fact, a generalization of 

Schoning’s algorithm. In the next section I will outline a proof that in a sufficiently large number of steps that does not 

exceed a quadratic polynomial of n, the algorithm will find a satisfying solution (if it exists) with high probability. 

3.   ANALYSIS OF THE ALGORITHM 

We consider a ONE-IN-THREE SAT problem with n variables. We define as usual the Hamming distance from an actual 

truth assignment for the n variables to a satisfying assignment (if it exists, and if there are more than one just choose one). 

The Hamming distance is the number of variables that have to be flipped in order to get to the satisfying assignment. This 

Hamming distance will be contained in the set *           +, and will also represent the state of the associated Markov 

chain (this method has also been used by Schoning). In fact, we will be dealing with one dimensional random walks with 

two absorbing barriers, but we may also refer to them as Markov chains.. 

We are ready to state the theorem. 

Theorem 1. For all (including the hardest) ONE-IN-THREE SAT problems, the algorithm presented in section 2 will find 

a satisfying assignment or its dual (finding its dual is equivalent to finding a satisfying assignment) in polynomial time 

(quadratic time) with high probability. For sufficiently large constant C (and by running the algorithms several times), we 

can make the probability that the algorithm will fail (meaning that it will report that the expression is unsatisfiable when 

in fact it is) with probability arbitrarily small. 

Proof. We have two types of flips that appear in the algorithm.  

The      flip.  

 In this case the Hamming distance increases by 1 with probability 
 

 
 . 

 In this case the Hamming distance decreases by 1 with probability 
 

 
 .  

The      flip.  

 In this case the Hamming distance increases by 1 with probability 
 

 
 . 

 In this case the Hamming distance decreases by 1 with probability 
 

 
 .  

This happens because in the context of ONE-IN-THREE SAT, a satisfying clause has exactly one literal with the truth 

value 1 and two literals with the truth value 0.  

We note that in the algorithm, both the      flips and the      flips are chosen with probability 
 

 
 . That means that 

overall, in the inner loop of the algorithm, the Hamming distance will increase with probability 
 

 
  
 

 
  

 

 
  
 

 
  

 

 
 . Also 

we see that overall, the Hamming distance will decrease also with probability 
 

 
  
 

 
  

 

 
  
 

 
  

 

 
 . We have here a 

symmetric (unbiased) random walk with two absorbing barriers, when the Hamming distance is 0 (when the satisfying 

assignment is found), or at Hamming distance n (when the dual of a satisfying assignment is found). 

We know that for a one dimensional, perfectly symmetric random walk with two absorbing barriers (and with n states), 

the expected lifetime is quadratic in n, and that is the most symmetric, balanced case (and this is a well known result, I 

will not give the proof here). From lemma 1 we see that the probability that the absorption time (seen a s a random 

variable) is higher than quadratic (when a solution exists) is vanishingly small. 

The problem can also be formulated in terms of the expected duration of the game for a version of the gambler ruin 

problem (for an unbiased game), but I will not emphasize that here.  
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In any case, we have quadratic time until absorption with arbitrarily high probability.  

Let’s assume that we start with a 3SAT problem with    variables and    clauses (we emphasize this case because SAT 

problems are most studied). We write        , where   is a small positive constant. For the most difficult problems   is 

around 4.267. The equivalent ONE-IN-THREE SAT problem will have          variables and       clauses (I 

assume that the reader is familiar with the reduction of a 3SAT problem into ONE-IN-THREE SAT, this is a well known 

procedure). In other words, the equivalent ONE-IN-THREE SAT problem will have (     )     variables and 

       clauses (we understand that we take the integer part of these expressions, but for simplicity we will omit that). 

That means that the constant C must be greater than  (     )  (for the most difficult problems). We note that the 

optimum value of the constant (for a given 3SAT instance) depends on ratio between the number of clauses and the 

number of variables of the expression. 

By taking the constant C large enough in the algorithm, and if we run the algorithm several times, we can make the 

probability of failure as small as we want. QED. 

Observation: We must be careful and see what happens when there are no literals left that allow the chosen type of flip to 

be performed, for example if all literals have the truth value 0 (or all 1) in the current assignment. That is not likely to 

happen for the interesting problems where we have both positive literals (the associated variable itself) and negative 

literals (the negation of the associated variable). Also this situation (or any possible infinite deterministic loops) happen 

with vanishing probability, and by running the algorithm many times we can solve this problem. 

4.    DISCUSSION AND CONCLUSIONS 

For general implications, related to efficiently solving NP – complete problems, see [3]. An interesting application is 

related to the problem of automated theorem proving using an efficient algorithm for NP – complete problems. The 

impact of this type of algorithm in mathematics, cryptography, science in general is hard to estimate. Also note that a 

derandomization of these algorithms could lead to interesting results. In a few words, this is a very important results with 

extremely important applications in any field of activity. 
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